A Parametric Approach to Counterparty and Credit Risk

Maximilian Härtel, Giuseppe Orlando
IDS GmbH - Analysis and Reporting Services, Allianz Asset Management AG

CEQURA Conference, September 23 - 24, 2013
This presentation should not be reported as representing the views of Allianz Asset Management AG (AAM) or IDS GmbH - Analysis and Reporting Services (IDS). Any views expressed reflect the current views of the authors, which do not necessarily correspond to the views of AAM, IDS, or their affiliates.
1 Introduction
2 Future Exposure Quantification Methods
3 Current Exposure Measurement
4 Future Exposure
5 Credit Loss
6 Correlation
7 Potential Collateral Requirements
1 Introduction
2 Future Exposure Quantification Methods
3 Current Exposure Measurement
4 Future Exposure
5 Credit Loss
6 Correlation
7 Potential Collateral Requirements
We want to know the exposure, which is at risk of defaulting counterparties, both today and in the future,

We want to know our current collateral/margin amounts as well as potential collateral requirements.
Current exposure is the maximum amount that will be lost if default occurs and if the contract is replaced today.

Future exposure is the maximum additional amount (under a certain distribution) that will be lost if default occurs on a future date before the maturity of the contract.
1. Introduction

2. Future Exposure Quantification Methods

3. Current Exposure Measurement

4. Future Exposure

5. Credit Loss

6. Correlation

7. Potential Collateral Requirements
The following two methods are used for quantification of future exposure:

1. Regulatory CEM/SM (Current Exposure Method/Standardised Method);
2. Monte-Carlo Simulation (full revaluation).
Quantification Methods II

The Monte-Carlo simulation is the most accurate but it is expensive and cumbersome.
The regulatory approach is easy to implement but has some significant shortcomings:

- It does not differentiate between margined and unmargined transactions;
- It does not sufficiently capture the level of volatilities as observed over the recent stress periods;
- The recognition of hedging and netting benefits through the Net-to-Gross-Ratio is too simplistic and does not reflect economically meaningful relationships between the derivative positions.

N.B.: This method is under review by the regulator and a non-internal model method (NIMM) has been recently proposed in June 2013 (rev. 25 July 2013).
Quantification Methods IV

- Therefore we will explain a third approach, i.e. a parametric methodology.
- Our proposal back in 2011 was to adopt an intermediate model SIMPLE and NOT CUMBERSOME but able to overcome most of the criticism against CEM/SM.
- This is not the egg of Columbus but thanks to its flexibility we could develop on top the concepts of credit loss, default probability (as a result of a Poisson process), we included CCPs (that many believe are risk free) and we extended the framework to liquidity risk by considering potential collateral requirements.
1. Introduction

2. Future Exposure Quantification Methods

3. **Current Exposure Measurement**

4. Future Exposure

5. Credit Loss

6. Correlation

7. Potential Collateral Requirements
The Net Replacement Value (NRV) for each counterparty k within each fund and netting group is defined as:

$$\text{NRV}_k = \sum_{f=1}^{F_k} \max \left[\sum_{g=1}^{G_{f,k}} \max \left(\sum_{i=1}^{N_{g,f,k}} V_{i,g,f,k,0} \right) - CM_{g,f,k,0} \right]$$

The current exposure for derivative contracts is defined as the sum of the NRVs across all counterparties:

$$\text{Current exposure} = \sum_{k=1}^{K} \text{NRV}_k$$
Notation

\[\text{NRV}_k := \text{Aggregated Net Replacement Value of counterparty } k. \]
\[K := \text{Number of counterparties.} \]
\[F_k := \text{Number of funds containing positions with counterparty } k. \]
\[G_{f,k} := \text{Number of netting groups in fund } f \text{ with counterparty } k. \]
\[N_{g,f,k} := \text{Number of positions in netting group } g, \text{ fund } f \text{ with counterparty } k. \]
\[\text{CM}_{g,f,k} := \text{Collateral/Margin amount of counterparty } k \text{ for fund } f \text{ and netting group } g. \]
\[V_{i,g,f,k} := \text{Value of position } i \text{ in netting group } g, \text{ fund } f \text{ with counterparty } k. \]
1. Introduction
2. Future Exposure Quantification Methods
3. Current Exposure Measurement
4. Future Exposure
5. Credit Loss
6. Correlation
7. Potential Collateral Requirements
The maximum credit exposure is the Value at Risk with a 99.5% confidence level.

Arbitrary assumptions for annual volatility, delta and duration for VaR calculation

<table>
<thead>
<tr>
<th>Assumptions for the extended VaR Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity</td>
</tr>
<tr>
<td>Fut/Fwd</td>
</tr>
<tr>
<td>Vola</td>
</tr>
<tr>
<td>Delta</td>
</tr>
</tbody>
</table>

For interest rate/fixed income derivatives, we assume the following VaR factors (increasing with maturity)

<table>
<thead>
<tr>
<th>Assumptions for the extended VaR Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Maturity</td>
</tr>
<tr>
<td>Time Factor</td>
</tr>
</tbody>
</table>
For sake of simplicity, we assume that the distribution is normal (a more refined approach, e.g. the Cornish-Fisher expansion, can be used in case the skewness and kurtosis are calculated). Hence $\alpha = 2.3226$ (one-sided 99.5% confidence level).

In this context, the VaR is the Shortfall/CVaR for a lower confidence level.
Parametric Approach: Calculations

For collateralised positions we calculate the weekly VaR.

VaR factor for collateralised positions

\[\text{VaR}_{\text{weekly}} = \alpha \cdot \frac{\text{Vol}_{\text{annual}}}{\sqrt{52}} \cdot \Delta \cdot T \]

For uncollateralised positions we calculate the fortnightly VaR.

VaR factor for uncollateralised positions

\[\text{VaR}_{\text{fortnightly}} = \alpha \cdot \frac{\text{Vol}_{\text{annual}}}{\sqrt{26}} \cdot \Delta \cdot T \]

For example, the VaR factor for an uncollateralised interest rate swap with time to maturity in 4 years is 8%.

VaR factor for an interest rate swap with maturity in 4 years

\[\text{VaR}_{\text{fortnightly}} = 2.3263 \cdot \frac{0.05}{\sqrt{26}} \cdot 1.00 \cdot 3.5 = 0.08 \]
The potential NRV of a counterparty k is the future exposure with counterparty k denoted by NRV-VaR_k, where VaR represents the amount calculated as follows:

\[
\text{VaR}_{i,g,f,k} = \text{Not}_{i,g,f,k} \cdot \text{VarFactor}_{i,g}
\]

\text{VarFactor}_{i,g} := \text{VaR factor of position } i \text{ in netting group } g.
\text{VaR}_{i,g,f,k} := \text{VaR of position } i \text{ in netting group } g, \text{ fund } f \text{ and with counterparty } k.
\text{Not}_{i,g,f,k} := \text{Notional of position } i \text{ in netting group } g, \text{ fund } f \text{ and with counterparty } k.
\text{NRV-VaR}_k := \text{Aggregated Net Replacement Value including VaR of counterparty } k.
The VaR factor depends on the investment type. This amount is used for computing the potential future exposure as shown in the formula below:

\[
\text{NRV-VaR}_k = \sum_{f=1}^{F_k} \max_{g=1}^{G_{f,k}} \left[\sum_{i=1}^{N_{g,f,k}} V_{i,g,f,k} + \text{VaR}_{i,g,f,k}, 0 \right] - \text{CM}_{g,f,k}, 0
\]

\(\text{VaR}_{i,g,f,k}:=\text{VaR of position } i \text{ in netting group } g, \text{ fund } f \text{ and with counterparty } k.\)

\(\text{CM}_{g,f,k}:=\text{Collateral/Margin amount of counterparty } k \text{ for fund } f \text{ and netting group } g.\)

\(\text{NRV-VaR}_k:=\text{Aggregated Net Replacement Value including VaR of counterparty } k.\)
Probability of Default

- We define the Credit Loss (CL) as the expected loss for the investor;
- There are two distinct credit losses: the CL based on the current exposure and that on the future exposure with the respective counterparty;
- In both cases, we need the probability of default of the respective counterparty which we derive from its rating;
- Historic data is only available on a yearly basis;
- The credit event is the first event of a Poisson counting process. With this assumption we can calculate the probability of defaults for time horizons of one or two weeks and denote it by p_k for the respective counterparty k.
Credit Loss I

CL of a position based on current exposure

$$\text{CL}_{i,g,f,k}^{\text{curr}} = V_{i,g,f,k} \cdot \text{LGD} \cdot p_k$$

CL of a position based on future exposure

$$\text{CL}_{i,g,f,k}^{\text{future}} = (V_{i,g,f,k} + \text{VaR}_{i,g,f,k}) \cdot \text{LGD}_i \cdot p_k$$
Credit Loss II

CL with a counterparty based on current exposure

\[
CL^{\text{curr}}_k = \sum_{f=1}^{F_k} \max \left[\sum_{g=1}^{G_{f,k}} \max \left(\sum_{i=1}^{N_{g,f,k}} CL^{\text{curr}}_{i,g,f,k}, 0 \right) - CM_{g,f,k}, 0 \right]
\]

CL with a counterparty based on future exposure

\[
CL^{\text{future}}_k = \sum_{f=1}^{F_k} \max \left[\sum_{g=1}^{G_{f,k}} \max \left(\sum_{i=1}^{N_{g,f,k}} CL^{\text{future}}_{i,g,f,k}, 0 \right) - CM_{g,f,k}, 0 \right]
\]

CL

\[
CL^{\text{curr}} = \sum_{k=1}^{K} CL^{\text{curr}}_k \quad CL^{\text{future}} = \sum_{k=1}^{K} CL^{\text{future}}_k
\]
Unexpected Loss I

Definition (Unexpected loss (UL))

We define the Unexpected Loss (UL) as the variation in the expected loss. UL is calculated as a standard deviation from the mean (given a certain confidence level) or, equivalently, as the difference between the expected loss (EL) and the VaR at a given confidence level. It is used to determine the level of economic capital to be held.

UL of a position based on current exposure

\[
UL_{i, g, f, k}^{\text{curr}} = \sqrt{V_{i, g, f, k}^2 \cdot LGD^2 \cdot p_k \cdot (1 - p_k)}
\]

UL of a position based on future exposure

\[
UL_{i, g, f, k}^{\text{future}} = \sqrt{(V_{i, g, f, k} + \text{VaR}_{i, g, f, k})^2 \cdot LGD^2 \cdot p_k \cdot (1 - p_k)}
\]
Unexpected Loss II

- Expected loss: Normal cost of doing business covered by provisioning and pricing policies.
- Unexpected loss: Potential unexpected loss for which capital should be held.
- Stress loss: Potential unexpected loss against which it is judged to be too expensive to hold capital against. Unexpected losses of this extent lead to insolvency.
Unexpected Loss III

UL with a counterparty based on current exposure

\[
UL_{curr}^k = \sum_{f=1}^{F_k} \max \left[\sum_{g=1}^{G_{f,k}} \max \left(\sum_{i=1}^{N_{g,f,k}} UL_{curr}^{i,g,f,k}, 0 \right) - CM_{g,f,k}, 0 \right]
\]

UL with a counterparty based on future exposure

\[
UL_{future}^k = \sum_{f=1}^{F_k} \max \left[\sum_{g=1}^{G_{f,k}} \max \left(\sum_{i=1}^{N_{g,f,k}} UL_{future}^{i,g,f,k}, 0 \right) - CM_{g,f,k}, 0 \right]
\]

UL

\[
UL_{curr} = \sum_{k=1}^{K} UL_{curr}^k \quad UL_{future} = \sum_{k=1}^{K} UL_{future}^k
\]

Härtel, Orlando
A Parametric Approach to Counterparty and Credit Risk
1 Introduction

2 Future Exposure Quantification Methods

3 Current Exposure Measurement

4 Future Exposure

5 Credit Loss

6 Correlation

7 Potential Collateral Requirements
Correlation I

- If there is a change in the value of a derivative this might impact the value of other derivatives of this counterparty.
- Correlation can be included only for positions within a netting group because positions from different netting groups cannot be netted:

$$\Sigma_{g,f,k} := \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$$

- c_{kl} denotes the correlation between position k and position l of netting group g.
- The weight $w_{i,g,f,k}$ of each position i in a netting group must be considered and it is measured by the respective notional.
Then, we define the vector $v_{g,f,k}$ as $w_{g,f,k}^T \cdot \beta_{g,f,k}$ with:

<table>
<thead>
<tr>
<th>Weight vector of netting group g</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_{g,f,k} := (w_{1,g,f,k}, \cdots, w_{n,g,f,k})^T$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VaR-factor vector of netting group g</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{g,f,k} := (\text{VaRFactor}{1,g,f,k}, \cdots, \text{VaRFactor}{n,g,f,k})^T$</td>
</tr>
</tbody>
</table>

We obtain the VaR factor for the netting group g as:

<table>
<thead>
<tr>
<th>VaR-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{VaRFactor}{g,f,k} := \sqrt{v{g,f,k} \sum_{g,f,k} v_{g,f,k}}$</td>
</tr>
</tbody>
</table>
In the end, the future exposure of a counterparty \(k \), i.e. the aggregated NRV including the VaR amount of counterparty \(k \) with integration of correlation, is:

\[
\text{NRV-VaR}_k = \sum_{f=1}^{F_k} \max_{g=1} \left[\sum_{g=1}^{G_{f,k}} \max \left(\sum_{i=1}^{N_{g,f,k}} V_{i,g,f,k}, 0 \right) + \text{VaR}_{g,f,k} - \text{CM}_{g,f,k}, 0 \right]
\]
When the value of a position decreases, it not only has an impact on the NAV but on the collateral too. Three cases might occur:

1. The position changes from positive to negative i.e. the fund has to give back the collateral received and post collateral;
2. The position remains positive, i.e. the fund has to give back part of the collateral received;
3. The position remains negative, i.e. the fund has to post additional collateral.
We define the Potential Collateral Requirements (PCR) of counterparty k as:

$$
PCR_k = \sum_{f=1}^{F_k} \max \left[-\sum_{g=1}^{G_{f,k}} \min(V_{g,f,k} + \text{VaR}_{g,f,k} - \text{CM}_{g,f,k} , 0) , 0 \right]
$$
The difference between available assets (i.e. liquidity, borrowing and eligible assets for collateral) and PCRs can be used for managing liquidity risk as a shortfall measure.

The collateral amount of a certain netting group collateral can be positive or negative, i.e. broker and client collateral have to be taken into consideration, respectively.

In order to evaluate, whether the eligible assets of a fund are sufficient to cover potential collateral requirements, the PCR must be reduced by the amount of off-balance broker collateral before comparing it to the amount of assets available.